
Key Words

Real-time simulation, Energy, Trainers

Abstract

Compact simulators provide a cost-effective platform for
training operators in power plant operation.
Traditionally, the development and maintenance of a
compact simulator system involves many manhour
intensive tasks. Framatome Technologies has produced a
suite of high-level tools, designed to run under Microsoft
WindowsTM, that automate many of these tasks. Each
member of the suite of tools is discussed along with how
it fits into the typical development cycle of a compact
simulator.

Introduction

The development of a compact simulator system requires
a large amount of plant data being available to the
developer. This data includes the plant’s physical
configuration, component information, and control-
system configuration. Bringing this data together into a
compact simulator involves the creation of two major
systems: the process model and the man-machine
interface. The process model provides a dynamic
response of the system for the simulator. Process models
for Framatome Technologies’ compact simulators
incorporate the control logic and all physical modeling
(e.g., pipes, pumps, turbines) based on first principles
into the process model. The man machine interface
(MMI) allows for the operation of the simulated plant
model. This may involve one or more distributed control
systems (DCS) emulations and/or “hard panel”
emulation.

Creation of a physical-process model from plant
drawings and component data is a complex task.
Although it is possible to write a complete custom
program to simulate a plant, the use of a component-
oriented modular modeling library can reduce this effort.

For plants that are in operation, data collected at the plant
during transients and steady-state conditions can serve to
verify the model.

Many stations now have DCS that provide an MMI to the
operators of the plant. This MMI information is specific
to each plant, and in most cases, is quite extensive. In
simulators where the actual MMI system is emulated,
conversion of the information to a format usable by the
emulated system can require significant effort.

Once the constituent pieces are combined, the complete
simulation is tested. Communication between the
process model and the MMI is provided by a pair of
companion programs designed to work with all
simulations developed with this set of tools. An
instructor station is another basic functionality provided
with training simulators.

Development Tools

Tools to be discussed in this section include:

- Component Modeling Library
- Graphical Model Builder
- Control Logic Translators
- DCS MMI Translators.

Process model creation uses the first three tools in the
above list. Translation of the DCS information into the
corresponding MMI programs makes use of the DCS
MMI Translators. Steps necessary to build hard-panel
emulations are discussed with the DCS MMI translators.

Process Model Creation

The power plant component-oriented modeling library is
commercially available through Framatome Technologies
as the Modular Modeling System (MMS). Engineering
analysis continues as the primary application of the
MMS. To meet the real-time constraints of compact
simulation, a new set of modules, based on the MMS
Release 4.0, known as the MMS Real-Time Capable

ADVANCED TRAINING SIMULATOR
DEVELOPMENT TOOLS FOR WINDOWSTM

C. A. Jones, N. S. Yee, and G. F. Malan
Framatome Technologies

Lynchburg, Virginia 24506-0935

(MMS-RTC) library is used to create the process models.
MMS makes use of the Advanced Continuous Simulation
Language (ACSL) from Mitchell and Gauthier
Associates (MGA, 1991). The simulation source code is
an ACSL source code with calls to pre-defined ACSL
macros from the MMS-RTC library.

Process model source code generation is greatly aided by
the use of a graphical program known as the MMS
Model Builder (Jones , 1992). Release 2.0, shown in
Figure 1 is due for release in the first half of 1995.
Models are built by placing graphical icons on the
worksheet representing a module from the MMS-RTC
library. Once the components are placed, connections
are made between the ports on the modules to define the
flow of fluids, control signals, heat transfer, or shaft
power. Because the source code is generated
automatically, source code errors are greatly reduced.
Another feature of the model builder that provides a great
reduction in effort is a feature known as “Auto-

parameterization.” Each
module has an interactive input form that allows the entry
of component data (i.e., pipe length, pipe ID). Auto-
parameterization calculates values like flow conductance,

heat-transfer parameters, and other parameters needed for
simulation to achieve a steady-state condition. Many of
these parameters require the engineer to look up values in
water tables or other references. Auto-parameterization
routines have all of the necessary routines built-in to
allow a calculation that would manually take minutes to
hours to be done in a few seconds.

All of the module and connection names can be set from
the Model Builder. This allows the designer to match the
internal names of the simulation with the names used by
the customer in their documentation as closely as
possible. Other features such as pan and zoom; split
views; cut, copy and paste; print preview and printing;
and documentation through a text output/input feature,
provide an increase in modeling efficiency. A major new
feature of Release 2.0 of the Model Builder is
Hierarchical Blocks. Hierarchical Blocks allows a group
of modules to be reduced to a single icon. When a user
clicks on the reduced icon a new window opens and

allows the user to edit the modules
inside the block. This makes representation and
duplication of complex systems much easier.

Figure 1. MMS Model Builder

In plants with a DCS, a Control Logic Translator
converts the control system configuration data directly
into source code that is merged with the source for the
physical-component process model. The same
WindowsTM interface program known as the MMS DCS
Translator is provided for all translators. After the MMS
DCS Translator is started, a translator “personality” is
loaded to translate the particular type of input desired. In
this way the user has a common interface from which to
work. Input to the translator is an ACSII file containing
the DCS configuration of interest. Currently the
translation of control logic for the Honeywell TDC-3000
system is supported.

Source code for the physical process model and the
control logic are merged into one source code. This code
is then used by the ACSL translator to produce a
FORTRAN file. The FORTRAN source code is then
linked with a set of MMS-RTC runtime routines to
produce the process model executable. ACSL provides a
runtime executive with a command-line interface for
control and testing of the model. Control system and
other analyses are part of the ACSL feature set which
expands the ability of the developer to test and tune the
model for maximum performance and stability.

MMI Emulation

Personalities for DCS MMI translations are also
available for the MMS DCS Translator. Westinghouse
WDPF and Honeywell TDC-3000 systems are currently
supported. Files from the plant’s DCS system are
transferred to the PC and the translator personality for the
specific system creates source code for the MMI screens.
The current version of the translator creates source code
for Microsoft’s Visual Basic (Microsoft, 1993) which has
the added value of providing an open system
development environment and has the availability of
complementary third party libraries and supplemented
software. The use of Visual Basic provides a number of
benefits for the developer and the user. The Visual Basic
programming interface is completely graphical with very
high-level graphical and source code editing features.
Visual Basic also has a complete interactive debugger,
project control, and the ability to create compiled
executables. The combination of these features provides
a great deal of development
support as well as a high-level interface to the user who
needs to modify any of the MMI screens.

When the DCS MMI translators are used with the related
control logic translator, all of the variable names in the
source code are based directly on the names used by the

DCS. This feature is a great benefit in debugging of the
process model. Because the names produced by the
control and MMI translators are the same, no name-
matching or translation is needed for connection from the
MMI to the process model.

The coverage, that is the amount of information
recovered from the DCS source files, is very complete
for the MMI translators. Hot-spot information, visual
feedback (e.g., color change, blinking, sound), and any
other logic in the MMI files are automatically picked up
and converted to Visual Basic source code.

Simulators that require hard panel emulations benefit
from the fact that the same high-level interface is
available to create custom screens. Users can create new
screens from scratch or modify the source code output
from the DCS MMI translator. Visual Basic supports the
loading of scanned images and creation of “hot-spots” in
a user friendly manner.

Figure 2 is the typical compact simulator configuration.
The network can be easily configured to support
additional features or special requirements.

Intel-Based SMP
Simulation Computer

Instructor
StationColor Printer

Ethernet Network

DCS Emulation
PC,

One or Two
Monitors, with

Touch-Screen as
Option.

DCS Emulation
PC,

One or Two
Monitors, with

Touch-Screen as
Option.

Standard
Keyboard

Optional
DCS Specific

Keyboard.

Standard
Keyboard

Optional
DCS Specific

Keyboard.

Alarm
Printer

Hard Panel
Emulations

PC,
One or Two

Monitors, with
Touch-Screen

as Option.

Standard
Keyboard

Figure 2. Typical Configuration

Runtime Configuration and Tools

Runtime tools provide the necessary communication and
control support for the simulator. These tools provide
the means of connecting the process model and MMI
emulation. An Instructor Station allows the person
conducting the training to control the simulation and to

build and introduce system malfunctions. Process model
execution takes place on an Intel-based Symmetric Multi-
Processor (SMP) machine running Windows NTTM.
Machines of this type are currently available with one to
four processors. All other machines are single-processor,
Intel-based, machines running WindowsTM or Window
NTTM.

Control and communication between the process model
and the remote machines is provided by a program
known as Simulation Master. Simulation Master runs on
the same machine as the process model and supports any
network configuration and protocol stack. TCP/IP is the
current default protocol and either ethernet or Token-
Ring can be supplied as the network.

A companion program that controls the MMI screens on

each MMI workstation is known
as the MMI Manager. As data is received from the
process model, the MMI Manager places the data in
memory so that the MMI screens can be updated. Then
the MMI Manager sends a message to all currently
running MMI screens that an update is to occur.

The MMI Manager also supports all custom keyboard
and touch screen support. Framatome Technologies
supports an emulated version of the WDPF keyboard and
uses Honeywell keyboards directly. Capacitve touch-
screen monitors are shipped with current simulators;
however, other types can be used.

Figure 3, shows the MMS Instructor Station. The
instructor can start, freeze and restart the simulation from
the instructor workstation. Snapshots can be taken of the
simulation and used to backtrack the simulators states.
Malfunctions, trend charting and other predefined actions
are available from menus. Any value from the simulator
can be viewed and any constant variable value can be
changed using the instructor workstation.

Complete Development Cycle

Figure 4 shows the complete cycle and how the discussed
tools are involved. Three development activities can
occur in parallel. One teams of engineers collects data
and completes the modeling of the physical plant by
using the MMS Model Builder program. A second
effort, which usually requires a single engineer, is the

Figure 3. MMS Instructor Station

translation and verification of the DCS control logic
source files into source code. The last major effort is to
translate the DCS MMI information into source code for
the MMI emulation programs.

Conclusions

Use of the Framatome Technologies suite of WindowsTM-
based compact simulator development tools greatly
reduces the effort in creating a compact simulator.
Automation of many of the tasks, such as Control Logic

and MMI translation, reduces the number of errors
introduced in hand coding. Using these tools with the
runtime control programs (Simulation Master, MMI
Manager, and the Instructor Station) provides a complete
simulation environment.

References

Mitchell & Gauthier Associates Inc., 1991. Advanced
Continuous Simulation Language Reference Manual.

Jones, C. A., 1992. 8th Power Plant Dynamics, Control
& Testing Symposium. University of Tennessee, College
of Engineering. Knoxville, Tennessee.

Microsoft Corporation, 1993. Microsoft Visual Basic
Language Reference.

Figure 4. Compact Simulator Development

Data
Collection

MMS Model
Builder

Physical Process
Source Code

DCS Control
Logic Files

Control Logic
Translator

Control Logic
Source Code

DCS MMI
Files

DCS MMI
Translator

MMI
Source Code

Data
Collection

Hard Panel
Source Code

ACSL Source Code Translation Visual Basic Source Code

FORTRAN
Source Code

MMS-RTC
Runtime
Library

Process Model Executable MMI Emulation Executables

