
Key Words

Trainers, Real-time, Simulation

Introduction

Most real-time training simulation methodologies allow
an instructor to control the training simulator’s basic
functions such as run, freeze, initialization, snapshot,
backtrack, time scaling, and invocation of
malfunctions/scenarios. This collection of functions is
typically called an Instructor Station and is performed on
a dedicated computer system that exchanges data over a
local area network with the other simulator system
computers. Framatome Technologies has extended this
basic concept to enhance the instructor capabilities,
productivity, and flexibility to readily adapt functions
such as scenarios and malfunctions easily and quickly
without any low-level programming and model
recompilation. These enhancements have been
implemented using recent programming language
advances that have become available with the
programming language C++ and the Microsoft Windows
NT environment. The main program for the Framatome
Technologies’ Instructor Station is called the Action
Center, which interfaces with complimentary instructor
station programs to provide features for trending and
trainee performance review.

Layered Approach to Model Control

Instructor-friendly model control is essential for effective
training. Inadequate tools can impede the training
experience by requiring a disproportionate amount of the
instructor’s attention. In addition to easy model control,
the instructor’s environment must be dynamic enough to
quickly adapt to unforeseen needs without resorting to
low-level programming. The Action Center, Figure 1,
provides a layered approach that meets both objectives:
ease of instructor model control and straightforward
extension of model operations (e.g., add new
malfunctions, scenarios).

In addition, the layered organization of the model
information processed by the Action Center provides a
separation of duties that makes a great deal of sense for
maintenance and extension of model operations. Three
levels of duty result from the Action Center design:

• Action Variable definitions (correlation
with model variables)

• Action definitions (malfunctions, scenarios,
etc.)

• Instruction in plant operation.

Although three different skills are needed, it is possible
that one individual could carry out two or all three of
these duties. The capability to perform one of these
tasks is based solely on the individual’s model, plant, and
instructional knowledge; not on programming ability
since setting up the Action Center is quite mechanical
and easy to master.1 The sections that follow contain a
detailed description of Action Variables, Actions, and
Model Control.

The layered approach discussed above is compliant with
the object-oriented design allowed by C++. Framatome
Technologies takes full advantage of C++ in its design of
the Action Center. The object-oriented design benefits
the user in several respects2. Most notably, no low-level
programming or compilation is needed to develop actions
(such as local operator actions [LOAs], malfunctions,
and scenarios). However, the Action Center can be
programmed in powerful custom applications via OLE
(Object Linking and Embedding) Automation (see the
OLE Automation section). The object-oriented and
layered approach allows the user to hide unnecessary

1 In fact, all individuals using the Action Center should
understand the steps required to perform all three levels
of duty.
2 Additional benefits include easy maintenance and
extensions to the Action Center code.

AN INSTRUCTOR-FRIENDLY, OBJECT-ORIENTED APPROACH
TO TRAINING SIMULATOR CONTROL

M.T. Matthews, W.T. Sneed, and G. F. Malan
Framatome Technologies

Lynchburg, Virginia 24506-0935
e-mail: simulator@framatech.com

details. This topic is discussed more in the following
sections.

Figure 1. Action Center Main View

Action Variables

Each action variable provides monitoring and direct
control of a simulation variable. An action variable
represents the lowest level of model information in the
Action Center; it is a direct tie to a variable in the
simulator model. As a result, defining and modifying
action variables should be carried out by someone with a
good understanding of the simulation model itself. This
person is referred to as a “model expert” throughout this
paper.

For real-time simulation, larger plant models are
contained in an optimized executable without the
overhead of supplementary functionality. The simulator
server maintains variable offsets in a memory region
shared by both the simulator executable and the simulator
clients. Clients (such as the Action Center and MMIs)

access this information as needed through an inter-
process communication (e.g. using TCP/IP and OLE
Automation) with the server.

Action variables provide a wrapper around the variable
defined in the simulator model. The wrapper adds
attributes to produce instructor-friendly, descriptive
variables without any impact on real-time simulation
performance. Equally important is that these variables
and their attributes can be changed interactively in the
midst of simulation control (or without being connected
to the simulation model).

Figure 2. Menu for Defining Action Variable

Variable name syntax is restrictive in programming
languages that are typically used to develop large plant
models. An action variable eliminates this restriction by
allowing multiple word names (spaces are allowed)
without length restrictions.

By providing a scaling function, action variables make it
easy to change the desired units viewed by the instructor
at anytime. The instructor will interface with the new
units with all indications of the variable value in the
desired units. All simulator model variable values are
automatically converted to the simulator model units
before being set in the model.

Improperly setting a variable often results in undesirable
consequences. Action variables contain certain attributes
that significantly reduce the possibility of this occurring.
Range validation (if defined for the action variable)
occurs during an attempt to set an action variable.
Additionally, an action variable can be flagged as non-
setable, which grays out the display of its value and
prevents any attempts to set its value.

Setting a simulation variable (directly for the simulator
model) sometimes requires more than just a direct set to
the variable. The main variable may require other
peripheral variables or toggling. These set requirements
dictate the different types of action variables that can be
defined by the model expert at the time they are added.
In effect, the steps and conditions required to set a
variable are hidden behind the different types of action
variables.

Grouping capability is provided for the action variables.
Although not restricted to plant systems, most grouping
will be based on these systems. The action variable

grouping provides an aid throughout the user-interface
when action variable names must be selected.

Typically, all action variables will be permanently
defined for all training sessions. The instructor will
benefit from the action variables without having to
understand the sometimes intricate details of how they
were defined in the simulator model. These benefits are
highlighted in the section titled “Total Model Control in
an Instructor-Friendly Environment.”

Actions

Although the action variables discussed in the previous
section provide monitoring and direct control of
variables, actions provide the instructor with the
functionality needed for controlling training scenarios.
Actions are categorized as local operator actions (LOAs),
malfunctions, and external conditions, for example.
Access to all variables allows the instructor to introduce
actions in any plant system/equipment supported by the
simulator’s scope of supply.

Typically, actions are generated by an “action
programmer” who understands both instructor training
needs and the action variables. Like the action variables,
actions are permanently stored and retrieved for
instruction.

General Action Attributes

All of the action types have the same general attributes
that define the basic functionality needed by the
instructor. Actions may be activated by some
combination of:

• Model timed activation - The action is scheduled to
be activated at a particular model time.

• Keyed activation - The action is activated when the
instructor types an assigned function key.

• Remote control activation - A hand-held remote
control allows the instructor to invoke actions when
he is not near the instructor station, freeing the
instructor from the keyboard. General model control
(e.g. run and freeze) is also provided by the remote
control.

• Delayed activation - The action is activated at a time
delayed relative to the current time.

• Triggered activation - The action activation occurs
when conditions specified by the instructor are
satisfied. This type of action provides the instructor
the use of operators such as AND, OR, and NOT and
relational operators such as EQ, NE, GT and LT.

It is up to the “action programmer” to categorize the
action according to the list below. All actions are listed
with the icons/descriptions shown below so that the
instructor immediately recognizes the category.

The most powerful attribute of an action comes through
the specification of its activation state3,4. By
highlighting an action and hitting go, the action is
initiated. Once initiated, an action is placed in a pending
state and not activated until the condition specified by the
activation set is met. The trigger syntax are relational
operators such as EQ, NE, GT, LT that are used for
comparisons and operators such as AND and OR that are
used for combining conditions. The ability to control
precedence is done parenthetically with no limit on the
level of complexity. If a delayed activation state is
chosen, the action is not activated until the specified time
span since initiation elapses.

While the general attributes apply to all actions, each
type contains individual characteristics as described in
the sections below. There are four basic types of actions:
Simple, Rampable, Multiple, and Scenarios. The first
two of these are centered around the controlling of one
action variable, while, the last two are groupings of
actions.

Simple Actions

The details of a simple action specifies an action variable
and a corresponding value to be set at the time of
activation.

Rampable Actions

An action variable can be linearly changed at a specified
rate or with some duration. Once activated, the ramp

3 Initiation refers to the act of placing the action on a
pending list, while activation refers to the act of
executing the action.
4 Scenarios are an exception, instead of an activation
state they use similar information to define an ending
condition. See the scenario sub-section.

remains active until the target value or duration has been
met.

Multiple Actions

Multiple actions provide containers for a group of
simple, rampable, and even other multiple actions. It still
contains the same general attributes that all actions have.
For example, a triggered state can be assigned to a
multiple action and it will be placed in a pending state
upon initiation. When activated, a multiple action will
initiate all of its child actions unto the pending list and
they will be handled as if they were initiated directly.

Scenarios

Typically, an instructor will initiate a scenario that will
completely define the training session. Like a multiple
action, a scenario will contain actions to be initiated.
However, scenarios contain details needed for controlling
the entire training session5.

Unlike other actions, scenarios are immediately activated
upon initiation and remain active until the end condition
is met or the specified duration expires. At the time of
activation, an initial condition (IC) according to the
scenarios specification is loaded and the model is started.
All of its member actions are immediately initiated just as
they are for a multiple action activation and the scenario
begins. Essentially, a scenario is completely automated
for the instructor with the click on one button.

A scenario is ended according to one of three conditions:
1) it is manually ended by the instructor, 2) the ending
condition is satisfied, or 3) the specified duration expires.
Regardless of the reason, at the end of a session, an IC
file is automatically stored with a filename containing a
date and time stamp, and the instructor’s name.

Total Model Control in an Instructor-Friendly
Environment

After initiating a scenario, an instructor is free to evaluate
a student’s actions without interruption. However, total
model control is provided for those instances when it is
needed. In addition, the Action Center can be viewed as
more than an Instruction tool. It offers a large number of
utilities for controlling the model.

Model Control

5 Only one scenario can be active at a given instant.

Figure 1. illustrates an instructor interface for a typical
model. A break-away toolbar provides easy access to
starting/stopping the model and the loading/storage of
ICs. An IC file viewer (not shown) displays three action
variable values as the user scrolls through a list of the
available IC files. The user can change the displayed
action variable values at anytime and the last choices are
persistent between sessions.

Action variables provide the ability to monitor and
directly set variables. When an action variable is
highlighted, its value is displayed to its right in an edit
box. If the value can be set (based on the action
variable’s attributes - see “Action Variables”) the edit
box will have a yellow background. If the value cannot
be set the edit box background is light gray. For action
variables that can be set, the user can quickly tab to the
edit box, change the value, and hit enter to perform the
set. Action variables might also have a tracking control
that provides a slider representing the current value
relative to the range defined for that action variable as
well as the ability to drag the slider to a new position
(value). In addition, the model variable control allows
for incremental step increases via the keyboard.

Views

During model control, the user will toggle between three
separate views: Main Action View, Pending View, and
Logging View.

Most of this paper’s discussion centers around the Main
Action View (Figure 1.); it provides a list of action
variables and a Tree Control for maintaining and
displaying the hierarchical nature of the actions. For
model control, action variable values can be set and
actions are initiated from this view.

Once initiated, actions are placed in a pending state and
then later activated (as discussed in the “Actions”
section). Monitoring the current state of this pending list
occurs in the Pending View. Typically, this view is for
monitoring the current state of a scenario. However,
actions can be cleared from the Pending list.
The Logging View automatically provides a log entry for
every instructor action; this log can be saved. Each log
entry includes a date/clock time stamp and the model
time.

Undoing Actions

For certain actions, the instructor must reverse (or undo)
the action at a later indeterminate time. For example, the

instructor has caused an oscillating control signal
malfunction during a training exercise. With the
trainee’s response and the resulting plant dynamics not
being pre-determined, the instructor might decide when
to correct the noisy signal based on the response. The
instructor is permitted to have other actions that may be
treated in a similar manner.

By placing an undo action for each of these types of
actions that have been activated in a special list, the
instructor can quickly identify and undo earlier actions.
Each simple action has an attribute flag that states if the
action can be reversed. If the action is reversible, the
action programmer also specifies the value being reset
during the undo operation.

Scripting with OLE Automation

OLE Automation is a technology that lets programs
expose their features to scripting tools and other
applications. This technology being included in the
Action Center provides the ability to write powerful
scripts to perform tasks that would otherwise be
unthinkable; complex scenarios, parameterization
studies, what-if analyses, and tutoring programs to
mention a few.

A model expert or action programmer can create client
applications using tools such as Microsoft’s Visual Basic
or Excel spreadsheet. The programming required to
control the model through OLE automation is quite
simple. The actual scenario being programmed will
determine how complicated the client application is.

Trending and Trainee Performance Review
Capabilities

Variable trending and trainee performance review are
two important complimentary functions to the Action
Center and are included in the instructor station as
separate, but integrated programs. The simulator model
variable trending functions provide the instructor the
ability to display simulator variables in a trend chart
format as illustrated in Figure 3. The instructor station
provides a very flexible, real-time trending capability for
process model variables. The user has complete control
over what variables are to be trended and how they
should be displayed. There are no limits on the number
of variables that can be displayed or the number of
graphs that can activated at one time. Each variable on a
graph is plotted in a different color, and the size and
proportions of each graph can be sized interactively by
the user with the mouse pointer. Scaling can be set by

the user or dynamic auto-scaling can be calculated by the
program. The dynamic scrolling of the trend graph is
smooth and provides for ease of viewing. Trend
information can be stored in a data format for post-
transient analysis by other programs. Dynamic digital
update of trended variables are another option.

Trainee performance review during or following a
training session is accomplished by examining the Trend
Statistics (sample shown in Figure 3.). The instructor can
interactively establish the trainee performance criteria
through upper/lower limit selections and receive
immediate trend statistics evaluation of these selections
for the trainee’s current training session.

Figure 3. Trend Displays with Trainee Performance Review Results

Conclusion

Advances have been made to provide an instructor
station environment that not only uses the latest and most
predominant operating system (Microsoft Windows), but
also provide the instructor significant enhancements to
increase productivity when using the simulator as a
training tool. These enhancements include the ability to
use descriptive model variable naming conventions,
provide complex conditional malfunctions and scenarios
without having to modify the simulator model coding or
model recompilation, and permit merging the simulator
model with third-party software for model control and
presentation of results through OLE technology. The
object-oriented approach used for this development acts
as a catalyst for future advances because of the ease in
which the capabilities can be extended to new instructor
station functions.

