
TVA Browns Ferry Simulator EHC System Upgrade Using Woodward's NetSimTM
Simulation Package

W. Todd Sneed, nHance Technologies, Lynchburg, VA

Van Miller, TVA Browns Ferry Nuclear Power Plant, Decatur, AL
Brian Baker, Woodward Governor, Fort Collins, CO

KEYWORDS
NetSim, Control Systems, TMR MicroNet

ABSTRACT
In the spring of 2000, the TVA Browns Ferry Nuclear Plant
awarded a main turbine Electro-Hydraulic Control (EHC)
system upgrade contract to GE Global Controls Services, the
former Global Services Division of Woodward Governor.
The EHC upgrade package consisted of two Woodward
TMR MicroNetTM controllers, hard-panel and Human
Machine Interface (HMI) operator displays, and an
associated simulator upgrade. This paper outlines the
various techniques successfully used to interface the
Woodward NetSimTM simulation package with the existing
Browns Ferry Nuclear Plant simulator.

NETSIM BACKGROUND
nHance Technologies, then the Simulation Services Division
of Framatome Technologies, was first contacted by
Woodward in 1995 to investigate the possibility of
developing a simulation platform that would allow
Woodward simulation engineers the flexibility to validate
control logic and control logic modifications on a simulator,
rather than by using the actual hardware. Of the numerous
benefits to Woodward was the ability to single-step the
control logic and step into the control algorithms. Since the
process model was simulated as well, this provided
Woodward engineers a unique ability not previously
possible. Reference [1] describes the simulation package in
more detail, which was subsequently named NetSim.

Today, Woodward and their systems integrators have
successfully used the NetSim simulation tools to accurately
predict control logic responses on more than 40 projects,
including gas turbine generator packages, co-gen stations,
mainline steam turbines, large process refrigeration systems,
natural gas pipeline stations, hydro power generating
stations, and marine applications. This paper documents the
interface techniques used to expand the list of successful
uses of NetSim to include nuclear power plant simulation.

NetSim Simulation Techniques
The basic concept behind the NetSim simulation was to use,
to the greatest extent possible, the C-code generated by the

Woodward Coder application. The early versions of NetSim
accomplished this by post-processing the native C-code such
that it could be compiled and executed on a PC. In order to
accomplish this task in an automated fashion, a series of
PERL scripts were developed. These scripts were initially
faced with two main tasks. First, the Woodward-generated
C-code contained a number of references to hardware
memory locations, and second, the real-time operating
environment used in the Woodward target hardware
automatically sequenced the code for each rate group thread.

 Memory Mapping
The generated C-code for the Woodward hardware typically
stored and referenced variable and state information as
hardware-specific memory locations. To avoid having to
translate this information into variable names, and to assist
with the save and restore feature, it was decided to take
advantage of Windows NT’s flat memory model, and
allocate a region of memory on the PC of identical size and,
where permissible, location as that used in the hardware.
Using this technique, most of the current state of the system
could be saved, and restored immediately upon request by
simply dumping the allocated memory region to a file.

 Rate Group Execution
During the processing of the Woodward generated C-code,
the PERL scripts automatically maintain a list of each
subroutine, and the rate group to which it belongs. Then,
after converting all of the existing code for each rate group,
a special function is created that calls, in the proper
sequence, all of the functions belonging to that rate group.
Using this technique, all of the code can be executed for a
particular rate group by simply calling the rate-group’s
governing function. The resulting C-code is then compiled
into a Windows Dynamic Link Library (DLL).

 Control Executive
Converting the Woodward generated C-code into a
Windows DLL solved a major portion of the simulation
problem, but a way to execute the control code and
communicate the control’s Inputs and Outputs (I/O) to the
control DLL was still needed. To accomplish these tasks, a
standard application called the NetSim Control Executive
was developed. The Control Executive was initially
designed to load a control DLL, and cycle the rate groups.

In addition, it was responsible for communicating with the
process model’s main simulation executive to exchange I/O.
The method decided upon for the synchronization between
the Control Executive and the process model was to use
Windows shared memory to store the control I/O. The
process model would place the control inputs into shared
memory and send an event to the control model that new
control data was available. The Control Executive would
copy the control inputs from shared memory into the control
DLL’s address space, then cycle the appropriate rate groups
based upon the simulation time expired from the last call.
Once the rate groups have been executed, the Control
Executive would copy the control outputs to shared memory,
and signal the process model that the control logic execution
completed.

 Human Machine Interface
The control executive is capable of using the Modbus
protocol to communicate with a Modbus-based HMI using
the same configuration information as the hardware. Since
the Woodward Modbus configuration information is stored
in the control logic generated by the Woodward tools, the
control interface uses the same configuration. Thus, the
NetSim product can use the same configured HMI
application as the true Woodward hardware.

BROWNS FERRY PROJECT
The Browns Ferry Simulator Upgrade Project consisted of
upgrading the Browns Ferry simulator to account for the
EHC System upgrade.

The division of responsibility for the simulator upgrade
portion of the Browns Ferry Project was as follows:

• Brian Baker of Woodward Governor was
responsible for development of the interface
spreadsheet, and providing advice, support, and
guidance on the NetSim application.

• Van Miller of TVA was responsible for all aspects

of programming on the Browns Ferry UNIX-based
simulation computer. This included obtaining data
from the process model, implementing the network
interface routines, and synchronizing the network
interface routines with the process model.

• Todd Sneed of nHance Technologies was

responsible for designing the interface program for
NetSim, making modifications to NetSim as
required to support the simulator integration, and
designing the TCP/IP network messages.

Challenges
Since the NetSim product existed at the time of the Browns
Ferry contract award, the challenge was not how to emulate
the Woodward control system. Rather, the challenge was
how to interface the existing PC-based control emulation to
the Browns Ferry Simulator. To accomplish this task, it was
decided to provide Browns Ferry with a Windows 2000-
based PC to execute the NetSim control emulation, and
interface the control emulation with the simulator using
standard TCP/IP-based network communications. To
accomplish this, a series of basic messages was designed to
handle the data exchange and executive communications.
These messages were then implemented on both the PC and
UNIX boxes. Once the communication messages were
designed and tested, the task became one of interfacing the
network interface applications with their corresponding
simulation executives, and ensuring proper control model
and process model synchronization.

TCP/IP Messages
The TCP/IP message definitions started with a standard
message structure that included enough overhead
information to ensure proper message processing as well as
the message data itself. The standard structure is presented
in Table 1.

Table 1, TCP/IP Message Structure

Name Description
TotalLength Total message length, including CRC
MessageKey Type of message being transmitted
MessageID Sequential Message ID
ResponseID ID of message being responded to
Pbuf Message dependent data
CRC CRC check on entire message

Once the overall message structure was designed, it was
necessary to work on the individual messages. The
messages were divided into two categories: those messages
sent from the Process Model and those sent from the Control
Model. Representative lists of messages sent from the
process model and control model are presented in Tables 2
and 3, respectively.

Table 2, Messages Sent from Process Model

Message Description
InitComs Sent to Initialize communications
DataExchangeCI Sent when new control inputs are

available
SaveDataImage Request for control model to save its

state
LoadDataImage Request for control model to load a

previously saved state

Table 3, Messages Sent from Control Model

Message Description
CmdResponse Response to various commands
DataExchangeCO Control Outputs sent to process

model
ComInfo Communications & Message

version information

Process Model Integration
The process model integration effort consisted of
exchanging simulator global and control model data in
addition to interfacing with the simulator executive controls.
However, this was only half the integration effort. Once the
two models were physically integrated, the real integration
effort began; namely, interfacing a control system designed
to work in plant conditions with a comparably large time-
step based discrete model. Thus, two challenges were
encountered during the process model integration effort;
first, a method had to be developed to physically exchange
data, and second the “real” plant environment verses
simulation effects had to be minimized.

 Physical Data Exchange using Sim2WGC
To physically exchange process model and control model
data a simulator interface application, named Sim2WGC
(Simulator to Woodward Governor Control) was developed.
Sim2WGC was designed to be responsible for
communicating with the process model directly via global
data, and the control model via TCP/IP, in effect, acting as a
communication “bridge” between the two models. However,
directly exchanging model data was not always proper, as
the control model and process model sometimes had
different engineering unit requirements. To address this
need, Sim2WGC was designed such that it could manipulate
the process model data passed to the control model, and
control model data passed to the process model as necessary
to accommodate the different engineering unit.

 Sim2WGC Data Manipulation
As mentioned above, the Sim2WGC application would
sometimes have to manipulate the data sent to and received
from the control model. For example, the control model
assumes various input data is coming from plant transmitters
that normally generate a 4-20 milliamp signal with gain and
offset differences between individual transmitters. As such,
the control model input blocks (or, sometimes a downstream
block) usually applied a gain/offset to the input signal and/or
would convert the 4-20 milliamp signal to engineering units
for internal calculations. Since the simulator process model
transmitters were “perfect” transmitters and represented the
actual process value in engineering units, the Sim2WGC
program converted the engineering units into a 4-20

milliamp signal based on the signal range expected by the
control model and applied the gain/offset values as
appropriate. This in effect, converted the process model
data into a format expected by the control model. A similar
approach was used when necessary to convert the control
model outputs into units required by the process model.

 Minimizing “Real” Effects on the Simulation
The Woodward TMR MicroNet control system has the
capability to divide up the control code execution into
separate rate group threads. The GE Global Controls
control model design employed for the Browns Ferry EHC
plant upgrade used a minimum rate group of 10 ms. Thus,
in the “Real” plant environment, the control model receives
various inputs from the plant every ten milliseconds.
However, in the existing simulator model, the Turbine
Controls were executed at 4 cycles per second (cps), or once
every 250 milliseconds. Ideally, for the new simulation, the
process model would be configured to execute the steam
turbine simulation in 10 millisecond intervals (or 100 cps).
Although raw computing power has increased dramatically
over the past few years, a 10-millisecond execution rate for
the process model was simply not practical. Therefore, the
process model simulation can’t execute at the same rate as
the control model and the control model must perform
several cycles using the same model data, resulting in
slightly different control responses than in the “Real” plant.
These different control effects had to be minimized.

The first, and easiest way to minimize the cycle discrepancy
effects is to minimize the number of control cycles that must
be executed using the same process model data. In other
words, increase the cycle rate of the appropriate simulation
systems as much as reasonably possible. Thus, the simulator
models in the areas of the main turbine model, turbine
control, main steam and reactor thermal-hydraulics were
increased to 12 cps (83 milliseconds).

At a 12 cps cycle rate, the normal sequence of events is as
follows: At the end of each cycle, the Sim2WGC
application collects a list of control model inputs, and passes
them to the control model. The NetSim Control Executive
compares the current model time with its last model time,
determines that 83 milliseconds has expired, and cycles the
appropriate rate groups the appropriate number of times,
collects the control outputs and passes them back to the
process model. For example, on a typical cycle, the control
model would cycle its 10ms rate group 8 times, its 20ms rate
group 4 times, its 40ms rate group 2 times, and its 80ms rate
group 1 time, in the appropriate order (10, 20, 10, 20, 10,
20, 10, 20, 40, …). Basically, since the rate groups were
triggered with a single data exchange message from the
process model, the control logic code executing in the rate

groups uses the same control inputs. This sequence of
events is of particular importance, for example, in the PID
type controls, which are normally in the 10ms rate group. In
the normal cycle outlined above, these controls integrate a
static signal for 8 cycles before passing the control output
(such as actuator demand) back to the process model. In
general, from a simulation perspective, there are only three
responses to this situation, namely:

• Execute the process model faster
• Modify the control model
• Analyze the impact, and live with the results.

As stated above, the first response was used somewhat, by
increasing the model execution frequency from 4 cps to 12
cps, but increasing it to 100 cps was not practical.

The second possible response is a valid option, however, it
was not desirable to modify the actual control logic, as it
was extremely important to use the same control logic in the
simulator as in the plant. However, the Woodward DCS
allows for the manipulation of various “Tunable” parameters
without actually modifying the control logic design itself.
For example, one particular problem was the control model
sampling of turbine speed input probes to determine if a
probe was good or bad. The test used by the control model,
which executed in a 10 ms rate group, was if the speed
demand and current speed were different by a specific delta,
which was “tunable.” On fast speed changes and with
simulator speed input from the simulator model changing
only once per eight times for the control model demand
request, the speed signals would sometimes be marked
“Bad.” This is where the simulator’s control model was
“de-tuned”; In other words, the set point was relaxed so the
control model would allow a greater tolerance before
marking the speed signal “Bad.”

The third response is not really a response, but rather a way
to determine how much of a problem exists. As it turns out,
the fidelity of the simulator response due to this interface
difference was analyzed after the cycle rate was increased,
and the tunable parameters were de-tuned for the simulator.
The result was that the simulator was able to adequately
match plant data.

Control Model Communication Interface
Once the network communication message structure was
outlined, a new application, named SimCom, was developed
to implement the PC side of the communications.

Since SimCom was designed to act as a bridge between the
Sim2WGC application (process model), and the control
model, it needed to know how to “talk” to both. As

mentioned above, the TCP/IP messages provided the
methods necessary to communicate with the process model.
These messages were implemented using the standard
Microsoft Foundation Classes (MFC) socket classes while
configuring SimCom to function as a “server,” at least in the
respect that it listened for connection attempts from the
Process Model. Once the server socket received a
connection request, it created a communication thread
designed to listen for messages from the server and respond
to them. In order to adequately respond to the messages,
SimCom had to know how to “talk” to the control model.

In general, the approach to develop communications
between SimCom and the control model was simply a matter
of designing SimCom to emulate S_Master, nHance
Technologies’ simulation executive for which NetSim was
designed to interface. To accomplish the S_Master
emulation the S_Master communication routines were
compiled into an interface DLL, which was loaded by
SimCom to provide the interface functionality. A block
diagram of the overall communication interface is presented
in Figure 1.

Synchronization
In order to ensure proper execution of the control model, it
was necessary to ensure the control model and process
model were synchronized, meaning that the control model
and process model executed their respective “cycles” at the
same time relative to one another’s cycle, thus ensuring
repeatability of calculated events.

On the control model side, synchronization was built in by
default, given the fact that the control model was
continuously in a state of “freeze” until it received the
control logic inputs from the process model. One of the
parameters passed along with the control logic inputs was
the “global simulation time”. From this time parameter, the
NetSim control executive could cycle the control model’s
rate groups as required to bring the control model to the
desired state at the equivalent model time. After all the
control model rate groups had been cycled, the NetSim
Control Executive would collect the control model output
parameters, and pass them along to the SimCom application.
SimCom then forwarded the messages to the process model,
allowing the process model the opportunity to process the
outputs and continue its cycle.

This technique automatically addressed the Freeze/Run/Step
states for the simulator, but it had one flaw. The process
model did not contain a “global simulation time,” rather; it
contained a variable for “problem time.” The basic
difference between simulation and problem time is that
problem time is reset to zero upon restoration of an Initial

Condition (IC). Since the control model uses simulation
time as a replacement for the hardware clock, resetting the
time to zero was unacceptable. To address this problem, a
variable was created on the process model that was
incremented with each process model cycle, and passed
along to the control model to ensure cycle synchronization.

Given the techniques outlined above, tight synchronization
with the process model would be guaranteed if the process
model had the ability to collect the control model inputs and
process control model outputs at the same point in every
execution cycle. However, in this particular case, the
Browns Ferry simulator model executed in a real-time
operating system, thus presenting a further complication.

To address the synchronization issue on the process model
side, it was decided to collect the control model inputs at the
beginning of every “frame,” which started every 1/12 of a
second. The inputs were then passed along to the control
model to process, and the outputs were received and
incorporated into the process model at the end of every
frame. Thus, synchronization was guaranteed only if the
control model could process the inputs and provide the
outputs within the 1/12 of a second time-slice. Since we
could not guarantee this tight synchronization, a method was
developed to identify when the control model and process
model fell out of synchronization. It was then subsequently
determined that this condition does not occur during normal
operation of the simulator.

EXISTING LIMITATIONS
One of the existing limitations of the control model is that its
data images are stored by dumping memory image to disk.
This technique provides for quick responses to data image
loads and restores, but at the expense of tagging the data
image to a unique instance of the control model. In other
words, if the control model changes even slightly, the
memory location for the data, and or the size of the data
could change, therefore invalidating the data images stored
on disk, and forcing a complete rebuild of all the simulator
IC files, which can be very time-consuming. This limitation
is mitigated somewhat by the fact that some minor changes
may permit reusing old IC’s, although, this is only
recommended for testing purposes, and not for training. It
should be pointed out here that the modification of tunable
parameters does not invoke this problem, as this can be
accomplished by simply loading each IC, setting the tunable
parameter, then resaving the IC.

CONCLUSION
This successful conclusion of the Browns Ferry Simulator
Upgrade Project demonstrates how a well-designed control

system simulation can be interfaced with a different platform
based simulation model in a cost effective manner. NetSim
has once again proven that it is fully capable of accurately
and reliably emulating a wide array of Woodward hardware
for use in control system validation, as well as a real-time
operator training simulator environment.

REFERENCE LIST
 [1] McWhorter, Scott, Brian Baker, and Greg Malan,

“Simulation System for Control Software Validation.”
Presented at SCS Simulation Multi-Conference, April
6-10, 1997, Atlanta, GA

BIOGRAPHY

W. Todd Sneed is the President of nHance Technologies,
which was established in March of 2001 when Framatome
ANP divested the Simulation Services Division. Before
founding nHance Technologies, Todd worked for 10 years
at Framatome, initially performing Loss of Coolant Accident
(LOCA) Analysis using the RELAP5 safety analysis code,
and later, as the principal contributor and software architect
for MMS Simulation Tools. Todd holds a B.S. in Nuclear
Engineering from North Carolina State University, and an
M.B.A. from Lynchburg College. Todd can be reached via
e-mail at: todd.sneed@nhancetech.com

Van Miller of Tennessee Valley Authority (TVA) is the lead
engineer on the Browns Ferry Simulator. Van has also
worked on TVA’s Sequoyah and Bellefonte simulators. His
responsibilities include maintenance and modifications of
simulator models, instructor station, I/O interfaces,
stimulated controls, and system administration. Van holds a
B.S. and Masters in Mechanical Engineering from
Tennessee Technological University. Van can be reached
via e-mail at: vnmiller@tva.gov

Brian Baker of Woodward Governor is the NetSim product
champion. Brian joined Woodward in 1995, after having
previously worked in the simulation business for ESSCOR
and General Dynamics. Brian used his knowledge of
simulation, and its benefits for control validation to
convince his managers to fund and support NetSim, which
has turned out to be a success story at Woodward. Brian
holds a B.S. in Mechanical Engineering from Oregon State
University. Brian can be reached via e-mail at:
NetSim@woodward.com.

Figure 1, Communication Overview

Browns Ferry
Simulator Interface

Program (Sim2WGC)

UNIX Based process
model computer

Simulator Operator
Interface (Hard Panel)

Intellution®
ModBus HMI

TCP/IP Messages

Control Model #1 Control Model #2

NetSim Control
Executive

NetSim Control
Executive

Simulator Communications App (SimCom)

Control Model Windows 2000 Based PC

Modbus

Existing Browns Ferry
Simulator Model

