
TVA Browns Ferry Simulator EHC System Upgrade Using Woodward's NetSimTM  
Simulation Package 

 
W. Todd Sneed, nHance Technologies, Lynchburg, VA 

Van Miller, TVA Browns Ferry Nuclear Power Plant, Decatur, AL  
Brian Baker, Woodward Governor, Fort Collins, CO  

 
KEYWORDS 
NetSim, Control Systems, TMR MicroNet 
 
ABSTRACT 
In the spring of 2000, the TVA Browns Ferry Nuclear Plant 
awarded a main turbine Electro-Hydraulic Control (EHC) 
system upgrade contract to GE Global Controls Services, the 
former Global Services Division of Woodward Governor.  
The EHC upgrade package consisted of two Woodward 
TMR MicroNetTM controllers, hard-panel and Human 
Machine Interface (HMI) operator displays, and an 
associated simulator upgrade.  This paper outlines the 
various techniques successfully used to interface the 
Woodward NetSimTM simulation package with the existing 
Browns Ferry Nuclear Plant simulator. 
 
NETSIM BACKGROUND  
nHance Technologies, then the Simulation Services Division 
of  Framatome Technologies, was first contacted by 
Woodward in 1995 to investigate the possibility of 
developing a simulation platform that would allow 
Woodward simulation engineers the flexibility to validate 
control logic and  control logic modifications on a simulator, 
rather than by using the actual hardware.  Of the numerous 
benefits to Woodward was the ability to single-step the 
control logic and step into the control algorithms.  Since the 
process model was simulated as well, this provided 
Woodward engineers a unique ability not previously 
possible.  Reference [1] describes the simulation package in 
more detail, which was subsequently named NetSim. 
 
Today, Woodward and their systems integrators have 
successfully used the NetSim simulation tools to accurately 
predict control logic responses on more than 40 projects, 
including gas turbine generator packages, co-gen stations, 
mainline steam turbines, large process refrigeration systems, 
natural gas pipeline stations, hydro power generating 
stations, and marine applications.  This paper documents the 
interface techniques used to expand the list of successful 
uses of NetSim to include nuclear power plant simulation. 
 
 
NetSim Simulation Techniques 
The basic concept behind the NetSim simulation was to use, 
to the greatest extent possible, the C-code generated by the 

Woodward Coder application.  The early versions of NetSim 
accomplished this by post-processing the native C-code such 
that it could be compiled and executed on a PC.  In order to 
accomplish this task in an automated fashion, a series of 
PERL scripts were developed.  These scripts were initially 
faced with two main tasks.  First, the Woodward-generated 
C-code contained a number of references to hardware 
memory locations, and second, the real-time operating 
environment used in the Woodward target hardware 
automatically sequenced the code for each rate group thread.   
 
 Memory Mapping  
The generated C-code for the Woodward hardware typically 
stored and referenced variable and state information as 
hardware-specific memory locations.   To avoid having to 
translate this information into variable names, and to assist 
with the save and restore feature, it was decided to take 
advantage of Windows NT’s flat memory model, and 
allocate a region of memory on the PC of identical size and, 
where permissible, location as that used in the hardware. 
Using this technique, most of the current state of the system 
could be saved, and restored immediately upon request by 
simply dumping the allocated memory region to a file. 
 
 Rate Group Execution 
During the processing of the Woodward generated C-code, 
the PERL scripts automatically maintain a list of each 
subroutine, and the rate group to which it belongs.  Then, 
after converting all of the existing code for each rate group, 
a special function is created that calls, in the proper 
sequence, all of the functions belonging to that rate group.  
Using this technique, all of the code can be executed for a 
particular rate group by simply calling the rate-group’s 
governing function.  The resulting C-code is then compiled 
into a Windows Dynamic Link Library (DLL). 
 
 Control Executive 
Converting the Woodward generated C-code into a 
Windows DLL solved a major portion of the simulation 
problem, but a way to execute the control code and 
communicate the control’s Inputs and Outputs (I/O) to the 
control DLL was still needed.  To accomplish these tasks, a 
standard application called the NetSim Control Executive 
was developed.  The Control Executive was initially 
designed to load a control DLL, and cycle the rate groups.  



In addition, it was responsible for communicating with the 
process model’s main simulation executive to exchange I/O.  
The method decided upon for the synchronization between 
the Control Executive and the process model was to use 
Windows shared memory to store the control I/O.  The 
process model would place the control inputs into shared 
memory and send an event to the control model that new 
control data was available.  The Control Executive would 
copy the control inputs from shared memory into the control 
DLL’s address space, then cycle the appropriate rate groups 
based upon the simulation time expired from the last call.  
Once the rate groups have been executed, the Control 
Executive would copy the control outputs to shared memory, 
and signal the process model that the control logic execution 
completed. 
 
 Human Machine Interface 
The control executive is capable of using the Modbus 
protocol to communicate with a Modbus-based HMI using 
the same configuration information as the hardware.  Since 
the Woodward Modbus configuration information is stored 
in the control logic generated by the Woodward tools, the 
control interface uses the same configuration.  Thus, the 
NetSim product can use the same configured HMI 
application as the true Woodward hardware. 
 
BROWNS FERRY PROJECT 
The Browns Ferry Simulator Upgrade Project consisted of 
upgrading the Browns Ferry simulator to account for the 
EHC System upgrade. 
 
The division of responsibility for the simulator upgrade 
portion of the Browns Ferry Project was as follows: 
 

• Brian Baker of Woodward Governor was 
responsible for development of the interface 
spreadsheet, and providing advice, support, and 
guidance on the NetSim application. 

 
• Van Miller of TVA was responsible for all aspects 

of programming on the Browns Ferry UNIX-based 
simulation computer.  This included obtaining data 
from the process model, implementing the network 
interface routines, and synchronizing the network 
interface routines with the process model. 

 
• Todd Sneed of nHance Technologies was 

responsible for designing the interface program for 
NetSim, making modifications to NetSim as 
required to support the simulator integration, and 
designing the TCP/IP network messages. 

 

Challenges 
Since the NetSim product existed at the time of the Browns 
Ferry contract award, the challenge was not how to emulate 
the Woodward control system.  Rather, the challenge was 
how to interface the existing PC-based control emulation to 
the Browns Ferry Simulator.  To accomplish this task, it was 
decided to provide Browns Ferry with a Windows 2000-
based PC to execute the NetSim control emulation, and 
interface the control emulation with the simulator using 
standard TCP/IP-based network communications.  To 
accomplish this, a series of basic messages was designed to 
handle the data exchange and executive communications.  
These messages were then implemented on both the PC and 
UNIX boxes.  Once the communication messages were 
designed and tested, the task became one of interfacing the 
network interface applications with their corresponding 
simulation executives, and ensuring proper control model 
and process model synchronization. 
 
TCP/IP Messages 
The TCP/IP message definitions started with a standard 
message structure that included enough overhead 
information to ensure proper message processing as well as 
the message data itself.  The standard structure is presented 
in Table 1. 

Table 1, TCP/IP Message Structure 

Name Description 
TotalLength Total message length, including CRC 
MessageKey Type of message being transmitted 
MessageID Sequential Message ID 
ResponseID ID of message being responded to 
Pbuf Message dependent data 
CRC CRC check on entire message 

 
Once the overall message structure was designed, it was 
necessary to work on the individual messages.  The 
messages were divided into two categories: those messages 
sent from the Process Model and those sent from the Control 
Model.  Representative lists of messages sent from the 
process model and control model are presented in Tables 2 
and 3, respectively.  

Table 2, Messages Sent from Process Model 

Message Description 
InitComs Sent to Initialize communications 
DataExchangeCI Sent when new control inputs are 

available 
SaveDataImage Request for control model to save its 

state 
LoadDataImage Request for control model to load a 

previously saved state 



Table 3, Messages Sent from Control Model 

Message Description 
CmdResponse Response to various commands 
DataExchangeCO Control Outputs sent to process 

model 
ComInfo Communications & Message 

version information 
 
Process Model Integration 
The process model integration effort consisted of 
exchanging simulator global and control model data in 
addition to interfacing with the simulator executive controls.  
However, this was only half the integration effort.  Once the 
two models were physically integrated, the real integration 
effort began; namely, interfacing a control system designed 
to work in plant conditions with a comparably large time-
step based discrete model.  Thus, two challenges were 
encountered during the process model integration effort; 
first, a method had to be developed to physically exchange 
data, and second the “real” plant environment verses 
simulation effects had to be minimized. 
  
 Physical Data Exchange using Sim2WGC 
To physically exchange process model and control model 
data a simulator interface application, named Sim2WGC 
(Simulator to Woodward Governor Control) was developed.   
Sim2WGC was designed to be responsible for 
communicating with the process model directly via global 
data, and the control model via TCP/IP, in effect, acting as a 
communication “bridge” between the two models. However, 
directly exchanging model data was not always proper, as 
the control model and process model sometimes had 
different engineering unit requirements.  To address this 
need, Sim2WGC was designed such that it could manipulate 
the process model data passed to the control model, and 
control model data passed to the process model as necessary 
to accommodate the different engineering unit. 
 
 Sim2WGC Data Manipulation 
As mentioned above, the Sim2WGC application would 
sometimes have to manipulate the data sent to and received 
from the control model.  For example, the control model 
assumes various input data is coming from plant transmitters 
that normally generate a 4-20 milliamp signal with gain and 
offset differences between individual transmitters.  As such, 
the control model input blocks (or, sometimes a downstream 
block) usually applied a gain/offset to the input signal and/or 
would convert the 4-20 milliamp signal to engineering units 
for internal calculations.  Since the simulator process model 
transmitters were “perfect” transmitters and represented the 
actual process value in engineering units, the Sim2WGC 
program converted the engineering units into a 4-20 

milliamp signal based on the signal range expected by the 
control model and applied the gain/offset values as 
appropriate.  This in effect, converted the process model 
data into a format expected by the control model.  A similar 
approach was used when necessary to convert the control 
model outputs into units required by the process model. 
 
 Minimizing “Real” Effects on the Simulation  
The Woodward TMR MicroNet control system has the 
capability to divide up the control code execution into 
separate rate group threads.  The GE Global Controls 
control model design employed for the Browns Ferry EHC 
plant upgrade used a minimum rate group of 10 ms.  Thus, 
in the “Real” plant environment, the control model receives 
various inputs from the plant every ten milliseconds.  
However, in the existing simulator model, the Turbine 
Controls were executed at 4 cycles per second (cps), or once 
every 250 milliseconds.  Ideally, for the new simulation, the 
process model would be configured to execute the steam 
turbine simulation in 10 millisecond intervals (or 100 cps).    
Although raw computing power has increased dramatically 
over the past few years, a 10-millisecond execution rate for 
the process model was simply not practical. Therefore, the 
process model simulation can’t execute at the same rate as 
the control model and the control model must perform 
several cycles using the same model data, resulting in 
slightly different control responses than in the “Real” plant.  
These different control effects had to be minimized. 
 
The first, and easiest way to minimize the cycle discrepancy 
effects is to minimize the number of control cycles that must 
be executed using the same process model data.  In other 
words, increase the cycle rate of the appropriate simulation 
systems as much as reasonably possible.  Thus, the simulator 
models in the areas of the main turbine model, turbine 
control, main steam and reactor thermal-hydraulics were 
increased to 12 cps (83 milliseconds).    
 
At a 12 cps cycle rate, the normal sequence of events is as 
follows:  At the end of each cycle, the Sim2WGC 
application collects a list of control model inputs, and passes 
them to the control model.  The NetSim Control Executive 
compares the current model time with its last model time, 
determines that 83 milliseconds has expired, and cycles the 
appropriate rate groups the appropriate number of times, 
collects the control outputs and passes them back to the 
process model.  For example, on a typical cycle, the control 
model would cycle its 10ms rate group 8 times, its 20ms rate 
group 4 times, its 40ms rate group 2 times, and its 80ms rate 
group 1 time, in the appropriate order (10, 20, 10, 20, 10, 
20, 10, 20, 40, …).  Basically, since the rate groups were 
triggered with a single data exchange message from the 
process model, the control logic code executing in the rate 



groups uses the same control inputs.  This sequence of 
events is of particular importance, for example, in the PID 
type controls, which are normally in the 10ms rate group.  In 
the normal cycle outlined above, these controls integrate a 
static signal for 8 cycles before passing the control output 
(such as actuator demand) back to the process model. In 
general, from a simulation perspective, there are only three 
responses to this situation, namely: 
 

• Execute the process model faster 
• Modify the control model 
• Analyze the impact, and live with the results. 

 
As stated above, the first response was used somewhat, by 
increasing the model execution frequency from 4 cps to 12 
cps, but increasing it to 100 cps was not practical. 
 
The second possible response is a valid option, however, it 
was not desirable to modify the actual control logic, as it 
was extremely important to use the same control logic in the 
simulator as in the plant.  However, the Woodward DCS 
allows for the manipulation of various “Tunable” parameters 
without actually modifying the control logic design itself.  
For example, one particular problem was the control model 
sampling of turbine speed input probes to determine if a 
probe was good or bad.  The test used by the control model, 
which executed in a 10 ms rate group, was if the speed 
demand and current speed were different by a specific delta, 
which was “tunable.”  On fast speed changes and with 
simulator speed input from the simulator model changing 
only once per eight times for the control model demand 
request, the speed signals would sometimes be marked 
“Bad.”  This is where the simulator’s control model was 
“de-tuned”; In other words, the set point was relaxed so the 
control model would allow a greater tolerance before 
marking the speed signal “Bad.” 
 
The third response is not really a response, but rather a way 
to determine how much of a problem exists.  As it turns out, 
the fidelity of the simulator response due to this interface 
difference was analyzed after the cycle rate was increased, 
and the tunable parameters were de-tuned for the simulator.  
The result was that the simulator was able to adequately 
match plant data. 
 
Control Model Communication Interface 
Once the network communication message structure was 
outlined, a new application, named SimCom, was developed 
to implement the PC side of the communications.   
 
Since SimCom was designed to act as a bridge between the 
Sim2WGC application (process model), and the control 
model, it needed to know how to “talk” to both.  As 

mentioned above, the TCP/IP messages provided the 
methods necessary to communicate with the process model.  
These messages were implemented using the standard 
Microsoft Foundation Classes (MFC) socket classes while 
configuring SimCom to function as a “server,” at least in the 
respect that it listened for connection attempts from the 
Process Model.  Once the server socket received a 
connection request, it created a communication thread 
designed to listen for messages from the server and respond 
to them.  In order to adequately respond to the messages, 
SimCom had to know how to “talk” to the control model. 
 
In general, the approach to develop communications 
between SimCom and the control model was simply a matter 
of designing SimCom to emulate S_Master, nHance 
Technologies’ simulation executive for which NetSim was 
designed to interface.  To accomplish the S_Master 
emulation the S_Master communication routines were 
compiled into an interface DLL, which was loaded by 
SimCom to provide the interface functionality.  A block 
diagram of the overall communication interface is presented 
in Figure 1. 
 
Synchronization 
In order to ensure proper execution of the control model, it 
was necessary to ensure the control model and process 
model were synchronized, meaning that the control model 
and process model executed their respective “cycles” at the 
same time relative to one another’s cycle, thus ensuring 
repeatability of calculated events. 
 
On the control model side, synchronization was built in by 
default, given the fact that the control model was 
continuously in a state of “freeze” until it received the 
control logic inputs from the process model.  One of the 
parameters passed along with the control logic inputs was 
the “global simulation time”.  From this time parameter, the 
NetSim control executive could cycle the control model’s 
rate groups as required to bring the control model to the 
desired state at the equivalent model time.  After all the 
control model rate groups had been cycled, the NetSim 
Control Executive would collect the control model output 
parameters, and pass them along to the SimCom application.  
SimCom then forwarded the messages to the process model, 
allowing the process model the opportunity to process the 
outputs and continue its cycle.   
 
This technique automatically addressed the Freeze/Run/Step 
states for the simulator, but it had one flaw.  The process 
model did not contain a “global simulation time,” rather; it 
contained a variable for “problem time.”  The basic 
difference between simulation and problem time is that 
problem time is reset to zero upon restoration of an Initial 



Condition (IC).  Since the control model uses simulation 
time as a replacement for the hardware clock, resetting the 
time to zero was unacceptable.  To address this problem, a 
variable was created on the process model that was 
incremented with each process model cycle, and passed 
along to the control model to ensure cycle synchronization. 
 
Given the techniques outlined above, tight synchronization 
with the process model would be guaranteed if the process 
model had the ability to collect the control model inputs and 
process control model outputs at the same point in every 
execution cycle.  However, in this particular case, the 
Browns Ferry simulator model executed in a real-time 
operating system, thus presenting a further complication. 
 
To address the synchronization issue on the process model 
side, it was decided to collect the control model inputs at the 
beginning of every “frame,” which started every 1/12 of a 
second.  The inputs were then passed along to the control 
model to process, and the outputs were received and 
incorporated into the process model at the end of every 
frame.  Thus, synchronization was guaranteed only if the 
control model could process the inputs and provide the 
outputs within the 1/12 of a second time-slice.  Since we 
could not guarantee this tight synchronization, a method was 
developed to identify when the control model and process 
model fell out of synchronization.  It was then subsequently 
determined that this condition does not occur during normal 
operation of the simulator.  
 
EXISTING LIMITATIONS  
One of the existing limitations of the control model is that its 
data images are stored by dumping memory image to disk.  
This technique provides for quick responses to data image 
loads and restores, but at the expense of tagging the data 
image to a unique instance of the control model.  In other 
words, if the control model changes even slightly, the 
memory location for the data, and or the size of the data 
could change, therefore invalidating the data images stored 
on disk, and forcing a complete rebuild of all the simulator 
IC files, which can be very time-consuming. This limitation 
is mitigated somewhat by the fact that some minor changes 
may permit reusing old IC’s, although, this is only 
recommended for testing purposes, and not for training.   It 
should be pointed out here that the modification of tunable 
parameters does not invoke this problem, as this can be 
accomplished by simply loading each IC, setting the tunable 
parameter, then resaving the IC. 
 
CONCLUSION 
This successful conclusion of the Browns Ferry Simulator 
Upgrade Project demonstrates how a well-designed control 

system simulation can be interfaced with a different platform 
based simulation model in a cost effective manner.  NetSim 
has once again proven that it is fully capable of accurately 
and reliably emulating a wide array of Woodward hardware 
for use in control system validation, as well as a real-time 
operator training simulator environment.  
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Figure 1, Communication Overview 
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